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This Lecture

® Aiming to not assume any prior knowledge of menu-size
concepts.

® Shout out if you have a question.

® Tutorial goal: start from basics, and get you acquainted
with the recent explosion of results, directions, and open
questions on menu sizes.

® This lecture: multi-item auctions.
® Kira's lecture (after the break): FedEx and related auctions.

® Focus on results, with only glimpses of proofs/techniques
(mostly for intuition regarding open questions).

® Lecture/tutorial order not chronological.

® Did | miss a relevant result? Please talk to me / email me.
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I'\?/Ieavzrrl:liiation M Odel

® A single seller has n nonidentical items that she would like to
sell. The seller has no other use (and has no cost) for the items.

® There is one (potential) buyer, who has a private value
(maximum willingness to pay) for each item (need not be the
same for all items).

® The buyer's valuation is additive: her value for any subset of the
items is the sum of her values for the items in the subset.

® The buyer's utility is quasilinear: her total utility is the sum of
her values for the items that she holds, minus any payments she
has made.

® The buyer has no budget constraints.

® Stylized model: the seller knows a prior distribution over the
buyer's values for the individual items. (The values for the various
item may be correlated.)

® (The buyer and seller are risk-neutral: seller cares only about
expected revenue, buyer cares only about expected utility.)
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Revenue

Maximization Auctlons / MeChanlsmS

® A (direct-revelation) auction mechanism is a function that maps
(in a possibly randomized manner) each possible buyer type
(specification of value for each item) to an outcome: which items
to award the buyer, and how much to charge the buyer.

® A mechanism is individually rational (IR) if the buyer can always
opt out: the expected utility (over the randomness of the
mechanism) of any buyer type is always nonnegative.
(Mechanism cannot be “pay me a billion dollars and get Item 3.")

® A mechanism is incentive compatible (IC) if the buyer has no
incentive to strategize: Vt,t' : E [u:(M(t))] > E [u:(M(t'))],
where the expectation is over the randomness of the mechanism.
(Mechanism cannot be “tell me your type, now take all items and
pay me your value for all items.”)

® The seller wishes to choose a truthful (IR+1C) mechanism that
maximizes her expected revenue, where the expectation is over
both the prior distribution and the randomness of the mechanism.
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One ltem

One Item is
Simple

® A possible mechanism: choose a price, and offer the item
for that price.

® Among all posted-price mechanisms, the one obtaining
highest revenue is the one posting a price of

argMax, p - Py r[v>p].

® Other mechanisms also possible (e.g., lottery tickets).

Theorem (Myerson, 1981; Riley and Zeckhauser, 1983)

No other mechanism can obtain better revenue than posting
the revenue-maximizing price.
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Two Items

How can the seller maximize the revenue from two items?
Optimal * [f independent, optimally sell each item separately? X

Auctions can
be Complex

Example

If both item values are uniformly distributed in {1,2}:
® Pricing each item separately, seller obtains a revenue
of $1 for each item, for a total revenue of $2.

® Pricing only the bundle at $3, seller obtains a
revenue of $3-0.75 =2.25 > 2!

® So pricing each item separately does not always
maximize revenue!
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Two Items

How can the seller maximize the revenue from two items?
If independent, optimally sell each item separately? X

Optimally sell the bundle of both items? X
Either sell separately or bundle? X

Optimal
Auctions can
be Complex

® Post a price for each item and a price for the bundle? X

Choose between a few lotteries? X

Distribution Optimal Mechanism
U({1,2})xU({1,2}) Sell the bundle (for $3)
U({0,1}) x U({0,1}) Sell each separately ($1 each)
U({0,1,2})x U({0,1,2})  Offer: one for $2 / both for $3
U({1,2}) x U({1,3}) e ey ket o
T'04,DDT'14

Beta(1,2) % Beta(1,2) Offer infinitely many lotteries

DDT'13,DDT'15
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Revenue

vemai . Not Merely Unaesthetic / Hard to Formally Analyze

One Item is
Simple

Optimal
Auctions can
be Complex

Meas.uring
Comlndty e Hard (#P-Hard) to compute.  oors

Menu-Size
Complexity

® Harder to represent to the participant.

Precise
Revenue
Maximization

Correlated ® Harder for the participant to find/verify optimal strategy.

Values

Additive
Approximation

Multiplicative,
Bounded [L,H]

Independent So what can we get using simpler auctions?

Values

Open
Questions

Beyond
Additive
Valuations

Zooming into
the Action
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Simple Auctions: Limiting Complexity

Option 1: Qualitatively: disallow some “features”:

® Allow only separate selling. HN'12
Measuring e Allow only “packaging”. BILW'14, R'16
Complexity . 3
® Disallow lotteries. BNR'18
An “all or " approach. ..

Such studied features lose at least a constant factor of revenue.

Option 2: Quantitatively: limit a numeric complexity measure:

e Number of options presented to the buyer. HN'13
® | ength of auction description using any language. DHN'14
® | earning-theoretic dimensionality. MR'15, MR'16, BSV'16, BSV'18
A es of gray” approach. ..
This tutorial.
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Revenue
Maximization

One Item is
Simple

Optimal
Auctions can
be Complex

Measuring
Auction
Complexity

Menu-Size
Complexity

Precise
Revenue
Maximization

Correlated
Values

Additive
Approximation

Multiplicative
Bounded [L,H]

Independent
Values

Open
Questions

Beyond
Additive
Valuations

Zooming into
the Action

The Menu Size of an Auction Mechanism
® By the Taxation Principle, every truthful mechanism,
however complex, is equivalent to specifying a menu of
p055|ble probablllstlc outcomes for the buyer to choose from.

Today’s Specials
P[Item 1] P[Item 2] E[Price! »

100%
30%

s il Menu Size
E Hart-Nisan'13

100%

‘One exit.r y

° Was roatlng around as a proof technlque even before 2013:
Briest-Chawla-Kleinberg-Weinberg'10, Dobzinski'11,
Dughmi-Vondrak'11, Dobzinski-Vondrak'12.
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Menu-Size as Complexity Measure: Pros and Cons

Pros:
® Simple and intuitive to define.
® Tractable to analyze.
® The base-2 logarithm (rounded up) of the menu-size is the
deterministic communication complexity of computing
ghenu Size the auction outcome (Babaioff-G.-Nisan'17).

Complexity
Cons:
® There may be auctions that are intuitively simple, and also

concise to describe, but have a large menu size.
® Main example: selling n items separately; menu-size exp(n).
® Indeed, high (linear in n) communication complexity. . .
but still seems “simple.” Mitigating: separate-selling revenue
attainable via poly(n) menu size (Babaioff-G.-Nisan'17).
® Switch to “additive menu” size? (Definition w.r.t. lotteries?)
® By any natural definition, even for two i.i.d. items, the
optimal revenue cannot be attained by an “additive menu”
(Babaioff-Nisan-Rubinstein’18).
Auction complexity measures trade-off simplicity of definition
(e.g., menu size) with flexibility (e.g., Kolmogorov complexity).
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Menu-Size
Complexity

Menu-Size Complexity

® The menu size is extremely simple and intuitive to define,

and directly implies the communication complexity of
running the mechanism.

But it is important to be aware of its flaws (esp. as a
function of the number of item n; actually as a function of
other parameters such as ¢ or H that will be defined later,
the above criticism does not directly apply, or even does
not apply at all).

Important to analyze this simple measure; important to
understand other auction complexity measures as well.
Must start from somewhere. . .

Maybe someone in the audience will suggest a new
measure for auction complexity?
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Precise Revenue Maximization

Theorem (Daskalakis et al., 2013, 2015)

There exists a distribution F € A([0,1]) s.t. the menu of the
optimal mechanism for F X F has a continuum of menu entries.

o ® F = Beta(1,2): distributed over [0, 1] w/density 2(1 — x).

Revenue ® Proof uses their optimal-transport duality framework.

Maximization

So, for precise revenue maximization:
® One item: menu-size 1 suffices (Myerson'81, RZ'83).

® Two items, even bounded, i.i.d., “nice” distributions:

infinite menu-size required.

Two ways to proceed from here:
e Approximate revenue maximization — rest of this lecture.

® Find a model “in between” one item and two i.i.d. items.
— Kira's lecture after the break.
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Approximate Revenue Maximization

Theorem (Hart-Nisan'13, inspired by proof of
Briest-Chawla-Kleinberg-Weinberg'10 for n > 3)

For every number of items n > 2, every € > 0, and every
menu-size m, there exists a distribution F € A([0,1]"]) s.t.

Optimal revenue attainable

i et ke T2 by:>Rev[m] (F) <e- 7?’ev(F)<: by any (truthful) auction

an auction with menu-size m

. ® |n particular, deterministic mechanisms cannot guarantee
orrelated . .
Rl any fraction of the optimal revenue.

e Compare: Hart-Reny'17 (see also Hart-Nisan'12): selling
two independent items separately attains > 62% of OPT.

Three ways to proceed from here:
® How does the revenue improve with the menu size?

® Relax our goal: additive approximation.
® Restrict distribs.: bounded also from below / independent.
Will touch on all above, focus on independent item distributions.
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Revenue Improvement with Menu Size

Theorem (Hart-Nisan'13)

For every n > 2 and every F ¢ A(R"):
@ Revpy)(F) = BRev(F) < 5 i vundc o oh items.
(2) RGV[m1+m2](F) < Rev[ml](F) +R6V[m2](F) for all my, my.
© Rev(y(F) < m-Revyy(F) for all m.

Corrlated How tight is Part @7 Obviously, for some F bundling is optimal,
e so for such distributions Revn,(F) = Revy(F) for all m.

Theorem (Hart-Nisan'13)

For every n > 2, there exists a distribution F € A(R") with
RGV[l](F) S (0, OO) S.t.

Revim(F) > 2(m"") - Revpy(F).

They conjecture that the constant 1/7 can be improved upon. . .
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Additive Approximation for Bounded Domains
Theorem (Dughmi-Han-Nisan'14, see also Hart-Nisan'13)

There exists C(n,e) = (logn/=)O(") s t. for every n, every e > 0,
and every F € A([0,1]"),
RGV[C(,,76)](F) > Rev(F) — €

® An upper bound! Proof technique: “nudge and round.”
* We will prove that C(n,¢) = (/c)°(") (Hart-Nisan'13):
@ Start with the optimal menu.
- ® Nudge: discount all prices multiplicatively: p < (1 —¢/a) - p.
igz:'tcl:iemation © Discretize by rounding probabilities (could have as well
rounded price) to multiples of <°/n2. (DHN'14: log grid.)
® Revenue loss at most 2¢. Indeed, if the original payment by
some buyer type is p, then new payment > (1 —¢/n)(p — €):
® Post-discounting, the utility from any menu-entry originally
costing less than p — ¢ is at least ’/n less than the utility
from the originally chosen menu-entry.
® Discretizing decreased the utility from the originally chosen
entry by at most =*/n, so could not have tilted the balance.
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Multiplicative Loss vs. Additive Loss

Recall that on one hand:

Theorem (Hart-Nisan'13, see also
Briest-Chawla-Kleinberg-Weinberg'10)

For every number of items n > 2, every € > 0, and every
menu-size m, there exists a distribution F € A([0,1]"]) s.t.

Revim(F) <e-Rev(F)

And on the other hand:
Theorem (Dughmi-Han-Nisan'14, see also Hart-Nisan'13)

Multiplicative,
DN | 7o oists C(n,e) = (logn/=)O(") st for every n, every e > 0,
and every F € A([0,1]"),

ReV[C(n,s)](F) > Rev(F)—¢

So the impossibility in the first theorem above comes from the
case of very small optimal revenues.
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Multiplicative Loss with Bounded Support

Indeed, the above additive upper bounds follow from:

Theorem (Dughmi-Han-Nisan'14, see also Hart-Nisan'13)

There exists C(n,e, H) = (M)O(") s.t. for every n,

every ¢ > 0, every H and every F € A([L, H]"),
Rev[c(,,@,_,)](F) (1—¢)-Rev(F)

Minimum of 1 is w.l.o.g., since can scale [L, H] to [1, H/L].

Theorem (Dughmi-Han-Nisan'14)

Multiplicative,
Bounded [L,H]

For distributions supported on [1, H]":
@ Menu-size n can attain a {2(1/log H) fraction of the revenue.

® Auctions with Kolmogorov complexity polynomial in n
guarantee at most a O(/log H) fraction of the revenue.

= Moving to any fancier complexity measure will not help here.
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Guarantees for Unbounded Distributions
For unbounded distribs., only multiplicative loss makes sense.
On one hand:
Theorem (Hart-Nisan'13, see also Briest et al.'10)
For every n > 2, every € > 0, and every menu-size m, there
exists a distribution F € A([0,1]"]) s.t.
Revim(F) <e-Rev(F)

And on the other hand:

Theorem

For every n, every € > 0, and every L, H, there exists
Independent

Values C(n,e,L/H) = (w)o(") s.t. for every F € A([L, H]”),

€

Revic(neymy)(F) > (1 —¢) - Rev(F)

What about restricting the distributions in some way other than
bounding? (In any way, “nudge and round” no longer suffices.)
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Independent Values

Theorem (Babaioff-G.-Nisan'17)
For every n and every € > 0, there exists C(n,e) = (logn/c) O(n)
s.t. for every Fi,...,F, € A(R}),

Revic(ne)(F1 x -+ x Fp) > (1 —¢) - Rev(F x -+ x Fp).

N

due to selling to the core.

® Recall: "nudge & round” > Single-tail | Double-tail
not suitable for unbounded only revenue independent so
T ) from high item | negligible part
distributions. significant. i of revenue.
. . !
(Grid discrete but infinite.) Small menu due ! Ignore when
. . to M'81/RZ’83 | building menu
® Rough high-level overview: H+---- ¢ o{e ***** REEE SEEES
|
I\;:ilizzndent L Scale S-aO that ReV(F) =1. all values low. : Single-tail
® For suitable H = poly(n, ¢): Somewhat tweaked! (similar to
. . “nudge & round.” | h
® Main thing to note: Scaled = additive! _, il
. . I single-tai
exponential menu size only loss lsqbls_“m?d |
In multiplicative. }
H i
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Required Menu Size

Theorem (Babaioff-G.-Nisan'17)
For every n and every € > 0, there exists C(n,e) = (logn/c) O(n)
s.t. for every Fi,...,F, € A(R}),

Revic(ne)(F1 x -+ x Fp) > (1 —¢) - Rev(F x -+ x Fp).

How fast must C grow as a function of n and €7
Theorem (Babaioff-Immorlica-Lucier-Weinberg'14)

For product distributions, either selling separately or selling
bundled guarantees at least ¢ > 1/6 of the optimal revenue.

Independent

Values Theorem (Babaioff-G.-Nisan'17)

For product distributions, the revenue from selling separately

can be attained up to a multiplicative £ via menu-size n?().

= poly(n) menu-size guarantees 1/6 of optimal revenue.
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Required Menu Size

Theorem (Babaioff-G.-Nisan'17)
For every n and every € > 0, there exists C(n,e) = (logn/c) O(n)
s.t. for every Fi,...,F, € A(R}),

Revicne)(F1 X -+ x Fp) > (1 —¢) - Rev(F1 x - -+ X Fp).

How fast must C grow as a function of n and €7
Theorem (Babaioff-G.-Nisan'17, see also Babaioff et al.14)

There exists d s.t. for every n and every F1,..., F, € A(Ry),
Revipe(F1 X <= X Fp) > 1/6 - Rev(Fy x --- x Fp).

Independent
Values

Theorem (Babaioff-G.-Nisan'17)

Fix F = U({0,1})", then Revipro(F) < (1 - =) - Rev(F).

Note: can sell the bundle w.h.p. and lose ~ 1/,/n of the revenue.
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Independent: Revenue Guarantee vs. Menu Size

- X

BGN117 ™ BGN 17 BGN'17

Open |
Questlon

constant
fraction
BILW'14

HN 1.2 BGN'17

1/n J

Ly'13
1 Poly(n) Exp(n)  Finite Infinite

Independent
Values

Guaranteed Fraction of Optimal Revenue

Menu Size
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Correlated: Revenue Guarantee vs. Menu Size

()
>
5,
o 1
Q
o
g
_1
i 1-1/n
o
@) o
%5 Kira's lecture
5 1-e¢ after the break }\
=
O
S constant
LL -
- fraction
Q
Q
=
Independent g
Values E 1/n
3 CKW'10,HN'13

1 Poly(n) Exp(n)  Finite Infinite
Menu Size
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Dependence on ¢: Lower Bound for Two Items
DDT'13,15 = required menu-size is w(1) as a function of .
Theorem (G.'18)

There exist C(e) = £2(1/¥z) and F € A([0,1]), s.t. for every
==0 Revice)(FxF) < Rev(FxF) —e
F = Beta(1,2) as in DDT. (Also via optimal transport.)
=- same lower bound for multiplicative ¢ loss, even for i.i.d.

= same {2(1/¥z) lower bound for any fixed n.
= For fixed n, menu-size poly(1/c) necessary and sufficient.

Independent
Values
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Dependence on ¢: Communication Complexity
DDT'13,15 = required menu-size is w(1) as a function of .

Theorem (G.'18)
There exist C(e) = £2(1/¥z) and F € A([0,1]), s.t. for every
==0 Revic(e)(FxF) < Rev(FxF) —e

® = For fixed n, menu-size poly(1/c) necessary and sufficient.

® Recall: the deterministic comm. complexity of computing a
mechanism outcome is the log of its menu-size. (BGN'17)

Corollary (G."18)

For every n there exists Dp(g) = ©O(log1/c) s.t. for every € > 0,
\ndependent Dn(e) is the minimum communication complexity that satisfies
the following: For every distribution F € A([0,1]") there exists
a mechanism M s.t. the deterministic comm. complexity of
running M is Dp(¢) and s.t. Revpy(F) > OPT(F) —e. (Holds
even if F guaranteed to be product of independent distribs.)
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Summary: Menu Size as a Function of n and ¢

C(n’ 5) : poly(n) BiwisBeN17 | some e (= 5/6)
poly(n) <777 <exp(n) | arbitrary fixed e
’ 1 "R"Z'?%_," poly(1/c) Ben17.6'18 exp(n)«—__ BN17 | £ — 0
n=1 arbitrary fixed n n— oo e=1n — 0

Open Question

Is it true that for every n, a menu-size polynomial in n can guarantee
99% of the optimal revenue for any F € A(R;)"?

Multiplicative loss seems the “right goal” for fixed € and n — cc.

® For additive ¢ loss and values in [0, 1], the lower bound of

Babaioff-G.-Nisan'17 implies that exp(n) menu-size required.
Independent . . “ . " .
Values ® Somewhat intuitive, as “total welfare in market” may grow linearly

with n (and does so in their analysis). Better goal for additive loss
is additive ne (or equivalently, additive e when values bounded
in [0,1/n]) — quite similar to multiplicative &.

Better core analysis than nudge and round?

Yannai A. Gonczarowski (HUJI&MSR) The Menu-Size Complexity of Multi-ltem Revenue Maximization June 18, 2018 25 / 32



Structure in the Core / Improve on Nudge & Round
® “Nudge and round” uses hardly any structural information
about the mechanism. Indeed, any mechanism (not
necessarily optimal) can be rounded using nudge and round.
® Some results were able to improve upon nudge and round
via structural information due to additional assumptions:
® Dughmi-Han-Nisan'14 achieve near-optimal revenue for
monotone valuations (good / is always valued less than
good i+1, e.g., ad auctions) via polynomial menu-size.
® \Wang-Tang'14: sufficient conditions / families of distributions
for which the optimal menu has very small (< 4; < 6) size.
® (.'18 slightly shaves exponent for a standard hazard condition.
® As we have seen, Babaioff-G.-Nisan'17 achieve separate-selling
revenue for independent valuations via polynomial menu-size.
® But structure of optimal mechanism, even for two items,
open ons even i.i.d., even bounded, mostly not understood.
® Main open problem: 99% of revenue via poly(n) menu-size,
even for i.i.d. items, even for bounded distributions.
e Additional open problem: constructive upper-bound proofs.

® As opposed to “start with an optimal menu and discretize.”
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Qualitative Results: Uniform Convergence

Restricting only to limits, most models pretty well understood:

) Rev[m](F)
v, m: e Re (e 0
Rev[m](F)

: 1
vn FeArzﬂh)n Rev(F) m—o0
VYn,H>L>0: in Rev[m](F) 1

’ FeA(lL,H]) Rev(F) m—o0
Vn : sup  (Rev(F) — Reviy(F)) ——— 0

FeA([0,1]7) m—00

® As noted, not understood well enough:
per, How fast must C grow as a function of n and &7
uestions
(What is the rate of (uniform) convergence?)

® May also be interesting: other restrictions/relaxations that
provide uniform convergence/uniform approximation?

Yannai A. Gonczarowski (HUJI&MSR) The Menu-Size Complexity of Multi-ltem Revenue Maximization June 18, 2018 27 / 32



More than One Buyer

Open
Questions

Everything so far was for one buyer.
Completely open: extend above results to > one buyer.
But how should menu-size be defined? The menu faced by
each buyer depends on the valuations of the other buyers.
Largest menu every shown? Sum of menu sizes? Size of
union of menus? Something else?
Or maybe focus on continuing to capture the
communication complexity of running the mechanism?
Related (welfare maximization literature): Dobzinski'16:
for rich-enough valuations (far beyond additive):
® communication complexity = log of number of possible
menus shown to a buyer (“taxation complexity”),
® query complexity ~ largest menu shown to any buyer.
® Does not apply to additive valuations (or even to
gross-substitute valuations).

What does capture these complexities for additive buyers?
Required complexities for good revenue guarantees?
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Summary of Open Questions (that interest me)

® 99% revenue via poly(n) menu-size in any model (even
i.i.d, even bounded)?

e (Constructive upper bounds? Efficient construction?
* Significantly tighter polynomials? (e.g., m"" in HN'13)
® Generalizations of above results for multiple buyers?

® Other restrictions (e.g., independent/bounded) or
relaxations (e.g., additive) that yield uniform approximation?
Open

Questions ® QOther auction complexity measures?

® The not-yet-stated question underlying your EC'19 paper!

Yannai A. Gonczarowski (HUJI&MSR) The Menu-Size Complexity of Multi-ltem Revenue Maximization June 18, 2018 29 / 32



Beyond
Additive
Valuations

An Aside: Query Complexity for Complex Valuations
® Dobzinski'll, Dughmi-Vondrak'll, Dobzinski-Vondrak'12,
Nisan'14 (survey, proof credited to Dobzinski) study the
query complexity of welfare-approximating auctions for
combinatorial (general, not necessarily additive) valuations.
® General proof scheme:

@ For any mechanism that guarantees good welfare, there
exist a buyer i and valuations for all other buyers s.t. buyer /
faces a large menu when all others have these valuations.

@® Number of value queries to buyer i is > menu size she faces.

® Sketch of second step, simplified for deterministic
mechanisms and general combinatorial valuations:
® Fix the valuations of all other buyers. Let buyer i value
bundle B by the price of bundle B according to the menu.
® Buyer i is completely indifferent between any two bundles.
® Consider the scenario where the value of buyer i for a
certain bundle B was actually one more than the price of
that bundle. For the mechanism to rule this out, it must
query the value of buyer i for each offered bundle.
® Above papers: restricted valuations, randomized auctions.
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Revenue

vemeaien - Zooming into the Action: a Brief History of Menu Sizes

One Item is
Simple

Optimal Multiplicative revenue approximation:

Auctions can
be Complex

Measuring 1 item items (combinatorial valuations)

Auction
Complexity

Menu-Size

Conpity 1 item items w/ additive valuations many items (combir

Precise
Revenue

Maximization 1 |tem

Correlated
Values

Additive 1 item 2 items w/ independent additive valuations 2 items w/

Approximation

items w/ additive valuations many items w/ additive

Multiplicative,
Bounded [L,H]

Independent

Values Precise revenue maximization:
Open

Questions

Beyond 1 Item

Additive
Valuations

items w/ i.i.d. additive bounded valuations

Kira's lecture after the break!

Zooming into
the Action
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Yannai A. Gonczarowski
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| RESTAURANT |

Questions? 0" \

MEWY
Thank you!  \Zvoe
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== [\ %
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"Lots of choice, 1sn't there!"
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