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This Lecture

• Aiming to not assume any prior knowledge of menu-size
concepts.

• Shout out if you have a question.

• Tutorial goal: start from basics, and get you acquainted
with the recent explosion of results, directions, and open
questions on menu sizes.
• This lecture: multi-item auctions.
• Kira’s lecture (after the break): FedEx and related auctions.

• Focus on results, with only glimpses of proofs/techniques
(mostly for intuition regarding open questions).

• Lecture/tutorial order not chronological.

• Did I miss a relevant result? Please talk to me / email me.
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Model

• A single seller has n nonidentical items that she would like to
sell. The seller has no other use (and has no cost) for the items.

• There is one (potential) buyer, who has a private value
(maximum willingness to pay) for each item (need not be the
same for all items).

• The buyer’s valuation is additive: her value for any subset of the
items is the sum of her values for the items in the subset.

• The buyer’s utility is quasilinear: her total utility is the sum of
her values for the items that she holds, minus any payments she
has made.

• The buyer has no budget constraints.

• Stylized model: the seller knows a prior distribution over the
buyer’s values for the individual items. (The values for the various
item may be correlated.)

• (The buyer and seller are risk-neutral: seller cares only about
expected revenue, buyer cares only about expected utility.)
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Auctions / Mechanisms

• A (direct-revelation) auction mechanism is a function that maps
(in a possibly randomized manner) each possible buyer type
(specification of value for each item) to an outcome: which items
to award the buyer, and how much to charge the buyer.

• A mechanism is individually rational (IR) if the buyer can always
opt out: the expected utility (over the randomness of the
mechanism) of any buyer type is always nonnegative.
(Mechanism cannot be “pay me a billion dollars and get Item 3.”)

• A mechanism is incentive compatible (IC) if the buyer has no
incentive to strategize: ∀t, t ′ : E [ut(M(t))] ≥ E [ut(M(t ′))],
where the expectation is over the randomness of the mechanism.
(Mechanism cannot be “tell me your type, now take all items and
pay me your value for all items.”)

• The seller wishes to choose a truthful (IR+IC) mechanism that
maximizes her expected revenue, where the expectation is over
both the prior distribution and the randomness of the mechanism.
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One Item

• A possible mechanism: choose a price, and offer the item
for that price.

• Among all posted-price mechanisms, the one obtaining
highest revenue is the one posting a price of

arg Maxp p · Pv∼F
[
v≥p

]
.

• Other mechanisms also possible (e.g., lottery tickets).

Theorem (Myerson, 1981; Riley and Zeckhauser, 1983)

No other mechanism can obtain better revenue than posting
the revenue-maximizing price.
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Two Items
How can the seller maximize the revenue from two items?
• If independent, optimally sell each item separately?

• Optimally sell the bundle of both items?

• Either sell separately or bundle?

• Post a price for each item and a price for the bundle?

• Choose between a few lotteries?

Distribution Optimal Mechanism

U
(
{1, 2}

)
×U

(
{1, 2}

)
Sell the bundle (for $3)

U
(
{0, 1}

)
×U

(
{0, 1}

)
Sell each separately ($1 each)

U
(
{0, 1, 2}

)
×U

(
{0, 1, 2}

)
Offer: one for $2 / both for $3

U
(
{1, 2}

)
×U

(
{1, 3}

) Offers include lottery tickets
(both for $4 / for $2.5: first w.p. 1, second w.p. 1/2)

T’04,DDT’14

Beta
(
1, 2

)
× Beta

(
1, 2

) Offer infinitely many lotteries
DDT’13,DDT’15
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Example

If both item values are uniformly distributed in {1, 2}:
• Pricing each item separately, seller obtains a revenue

of $1 for each item, for a total revenue of $2.

• Pricing only the bundle at $3, seller obtains a
revenue of $3 · 0.75 = 2.25 > 2!

• So pricing each item separately does not always
maximize revenue!
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Not Merely Unaesthetic / Hard to Formally Analyze

• Hard (#P-Hard) to compute. DDT’14

• Harder to represent to the participant.

• Harder for the participant to find/verify optimal strategy.

So what can we get using simpler auctions?
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Simple Auctions: Limiting Complexity

Option 1: Qualitatively: disallow some “features”:
• Allow only separate selling. HN’12

• Allow only “packaging”. BILW’14, R’16

• Disallow lotteries. BNR’18

An “all or nothing” approach. . .

Such studied features lose at least a constant factor of revenue.

Option 2: Quantitatively: limit a numeric complexity measure:
• Number of options presented to the buyer. HN’13

• Length of auction description using any language. DHN’14

• Learning-theoretic dimensionality. MR’15, MR’16, BSV’16, BSV’18

A “ ” approach. . .

This tutorial.
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The Menu Size of an Auction Mechanism
• By the Taxation Principle, every truthful mechanism,

however complex, is equivalent to specifying a menu of
possible probabilistic outcomes for the buyer to choose from.

Chez Seller
Items • Bundles • Lotteries

Today’s Specials

P[Item 1] P[Item 2] E[Price]

0% 100% $3
20% 30% $4
40% 60% $10
.
.
.

.

.

.

.

.

.

100% 100% $20

The Classic Choice

0% 0% $0

— One entry per buyer —

Menu Size
Hart-Nisan’13

• Was floating around as a proof technique even before 2013:
Briest-Chawla-Kleinberg-Weinberg’10, Dobzinski’11,
Dughmi-Vondrak’11, Dobzinski-Vondrak’12.
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Menu-Size as Complexity Measure: Pros and Cons
Pros:
• Simple and intuitive to define.
• Tractable to analyze.
• The base-2 logarithm (rounded up) of the menu-size is the

deterministic communication complexity of computing
the auction outcome (Babaioff-G.-Nisan’17).

Cons:
• There may be auctions that are intuitively simple, and also

concise to describe, but have a large menu size.
• Main example: selling n items separately; menu-size exp(n).

• Indeed, high (linear in n) communication complexity. . .
but still seems “simple.” Mitigating: separate-selling revenue
attainable via poly(n) menu size (Babaioff-G.-Nisan’17).

• Switch to “additive menu” size? (Definition w.r.t. lotteries?)
• By any natural definition, even for two i.i.d. items, the

optimal revenue cannot be attained by an “additive menu”
(Babaioff-Nisan-Rubinstein’18).

Auction complexity measures trade-off simplicity of definition
(e.g., menu size) with flexibility (e.g., Kolmogorov complexity).
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Menu-Size Complexity

• The menu size is extremely simple and intuitive to define,
and directly implies the communication complexity of
running the mechanism.

• But it is important to be aware of its flaws (esp. as a
function of the number of item n; actually as a function of
other parameters such as ε or H that will be defined later,
the above criticism does not directly apply, or even does
not apply at all).

• Important to analyze this simple measure; important to
understand other auction complexity measures as well.
Must start from somewhere. . .

• Maybe someone in the audience will suggest a new
measure for auction complexity?
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Precise Revenue Maximization

Theorem (Daskalakis et al., 2013, 2015)

There exists a distribution F ∈ ∆
(
[0, 1]

)
s.t. the menu of the

optimal mechanism for F×F has a continuum of menu entries.

• F = Beta(1, 2): distributed over [0, 1] w/density 2(1− x).

• Proof uses their optimal-transport duality framework.

So, for precise revenue maximization:
• One item: menu-size 1 suffices (Myerson’81, RZ’83).

• Two items, even bounded, i.i.d., “nice” distributions:
infinite menu-size required.

Two ways to proceed from here:
• Approximate revenue maximization — rest of this lecture.

• Find a model “in between” one item and two i.i.d. items.
— Kira’s lecture after the break.
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Approximate Revenue Maximization

Theorem (Hart-Nisan’13, inspired by proof of
Briest-Chawla-Kleinberg-Weinberg’10 for n ≥ 3)

For every number of items n ≥ 2, every ε > 0, and every
menu-size m, there exists a distribution F ∈ ∆

(
[0, 1]n]

)
s.t.

Optimal revenue attainable by
an auction with menu-size m⇒Rev [m](F ) < ε · Rev(F )⇐Optimal revenue attainable

by any (truthful) auction

• In particular, deterministic mechanisms cannot guarantee
any fraction of the optimal revenue.

• Compare: Hart-Reny’17 (see also Hart-Nisan’12): selling
two independent items separately attains ≥ 62% of OPT.

Three ways to proceed from here:
• How does the revenue improve with the menu size?

• Relax our goal: additive approximation.

• Restrict distribs.: bounded also from below / independent.

Will touch on all above, focus on independent item distributions.
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Revenue Improvement with Menu Size

Theorem (Hart-Nisan’13)

For every n ≥ 2 and every F ∈ ∆(Rn
+):

1 Rev [1](F ) = BRev(F )⇐Revenue attainable by optimally
pricing the bundle of all items

2 Rev [m1+m2](F ) ≤ Rev [m1](F ) +Rev [m2](F ) for all m1,m2.

3 Rev [m](F ) ≤ m · Rev [1](F ) for all m.

How tight is Part 3 ? Obviously, for some F bundling is optimal,
so for such distributions Rev [m](F ) = Rev [1](F ) for all m.

Theorem (Hart-Nisan’13)

For every n ≥ 2, there exists a distribution F ∈ ∆(Rn
+) with

Rev [1](F ) ∈ (0,∞) s.t.

Rev [m](F ) ≥ Ω(m
1/7) · Rev [1](F ).

They conjecture that the constant 1/7 can be improved upon. . .
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Additive Approximation for Bounded Domains

Theorem (Dughmi-Han-Nisan’14, see also Hart-Nisan’13)

There exists C (n, ε) = (log n/ε)O(n) s.t. for every n, every ε > 0,
and every F ∈ ∆

(
[0, 1]n

)
,

Rev [C(n,ε)](F ) > Rev(F )− ε

• An upper bound! Proof technique: “nudge and round.”
• We will prove that C (n, ε) = (n/ε)O(n) (Hart-Nisan’13):

1 Start with the optimal menu.
2 Nudge: discount all prices multiplicatively: p ← (1− ε/n) · p.
3 Discretize by rounding probabilities (could have as well

rounded price) to multiples of ε2
/n2. (DHN’14: log grid.)

• Revenue loss at most 2ε. Indeed, if the original payment by
some buyer type is p, then new payment ≥ (1− ε/n)(p − ε):
• Post-discounting, the utility from any menu-entry originally

costing less than p − ε is at least ε2
/n less than the utility

from the originally chosen menu-entry.
• Discretizing decreased the utility from the originally chosen

entry by at most ε2
/n, so could not have tilted the balance.

Yannai A. Gonczarowski (HUJI&MSR) The Menu-Size Complexity of Multi-Item Revenue Maximization June 18, 2018 15 / 32



Revenue
Maximization

One Item is
Simple

Optimal
Auctions can
be Complex

Measuring
Auction
Complexity

Menu-Size
Complexity

Precise
Revenue
Maximization

Correlated
Values

Additive
Approximation

Multiplicative,
Bounded [L,H]

Independent
Values

Open
Questions

Beyond
Additive
Valuations

Zooming into
the Action

Multiplicative Loss vs. Additive Loss
Recall that on one hand:

Theorem (Hart-Nisan’13, see also
Briest-Chawla-Kleinberg-Weinberg’10)

For every number of items n ≥ 2, every ε > 0, and every
menu-size m, there exists a distribution F ∈ ∆

(
[0, 1]n]

)
s.t.

Rev [m](F ) < ε · Rev(F )

And on the other hand:

Theorem (Dughmi-Han-Nisan’14, see also Hart-Nisan’13)

There exists C (n, ε) = (log n/ε)O(n) s.t. for every n, every ε > 0,
and every F ∈ ∆

(
[0, 1]n

)
,

Rev [C(n,ε)](F ) > Rev(F )− ε

So the impossibility in the first theorem above comes from the
case of very small optimal revenues.
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Multiplicative Loss with Bounded Support

Indeed, the above additive upper bounds follow from:

Theorem (Dughmi-Han-Nisan’14, see also Hart-Nisan’13)

There exists C (n, ε,H) =
( log n+log H

ε

)O(n)
s.t. for every n,

every ε > 0, every H and every F ∈ ∆
(
[1,H]n

)
,

Rev [C(n,ε,H)](F ) > (1− ε) · Rev(F )

Minimum of 1 is w.l.o.g., since can scale [L,H] to [1, H/L].

Theorem (Dughmi-Han-Nisan’14)

For distributions supported on [1,H]n:
1 Menu-size n can attain a Ω(1/log H) fraction of the revenue.

2 Auctions with Kolmogorov complexity polynomial in n
guarantee at most a O(1/log H) fraction of the revenue.

⇒ Moving to any fancier complexity measure will not help here.
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Guarantees for Unbounded Distributions
For unbounded distribs., only multiplicative loss makes sense.
On one hand:

Theorem (Hart-Nisan’13, see also Briest et al.’10)

For every n ≥ 2, every ε > 0, and every menu-size m, there
exists a distribution F ∈ ∆

(
[0, 1]n]

)
s.t.

Rev [m](F ) < ε · Rev(F )

And on the other hand:

Theorem

For every n, every ε > 0, and every L,H, there exists

C (n, ε, L/H) =
( log n+log L/H

ε

)O(n)
s.t. for every F ∈ ∆

(
[L,H]n

)
,

Rev [C(n,ε,L/H)](F ) > (1− ε) · Rev(F )

What about restricting the distributions in some way other than
bounding? (In any way, “nudge and round” no longer suffices.)
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Independent Values

Theorem (Babaioff-G.-Nisan’17)

For every n and every ε > 0, there exists C (n, ε) =
(

log n/ε
)O(n)

s.t. for every F1, . . . ,Fn ∈ ∆(R+),

Rev [C(n,ε)](F1 × · · · × Fn) > (1− ε) · Rev(F1 × · · · × Fn).

• Recall: “nudge & round”
not suitable for unbounded
distributions.
(Grid discrete but infinite.)
• Rough high-level overview:

• Scale so that Rev(F ) = 1.
• For suitable H = poly(n, ε):

• Main thing to note:
exponential menu size only
due to selling to the core.

v1

v 2

H

H

Double-tail
independent so
negligible part

of revenue.

Ignore when
building menu

Single-tail
only revenue

from high item
significant.

Small menu due
to M’81/RZ’83

Single-tail

(similar to
other

single-tail)

Core
all values low.

Somewhat tweaked
“nudge & round.”
Scaled ⇒ additive

loss subsumed
in multiplicative.
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Required Menu Size

Theorem (Babaioff-G.-Nisan’17)

For every n and every ε > 0, there exists C (n, ε) =
(

log n/ε
)O(n)

s.t. for every F1, . . . ,Fn ∈ ∆(R+),

Rev [C(n,ε)](F1 × · · · × Fn) > (1− ε) · Rev(F1 × · · · × Fn).

How fast must C grow as a function of n and ε?

Theorem (Babaioff-Immorlica-Lucier-Weinberg’14)

For product distributions, either selling separately or selling
bundled guarantees at least c > 1/6 of the optimal revenue.

Theorem (Babaioff-G.-Nisan’17)

For product distributions, the revenue from selling separately
can be attained up to a multiplicative ε via menu-size nd(ε).

⇒ poly(n) menu-size guarantees 1/6 of optimal revenue.
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Required Menu Size

Theorem (Babaioff-G.-Nisan’17)

For every n and every ε > 0, there exists C (n, ε) =
(

log n/ε
)O(n)

s.t. for every F1, . . . ,Fn ∈ ∆(R+),

Rev [C(n,ε)](F1 × · · · × Fn) > (1− ε) · Rev(F1 × · · · × Fn).

How fast must C grow as a function of n and ε?

Theorem (Babaioff-G.-Nisan’17, see also Babaioff et al.’14)

There exists d s.t. for every n and every F1, . . . ,Fn ∈ ∆(R+),

Rev [nd ](F1 × · · · × Fn) > 1/6 · Rev(F1 × · · · × Fn).

Theorem (Babaioff-G.-Nisan’17)

Fix F = U
(
{0, 1}

)n
, then Rev [2n/10](F ) < (1− 1

10n ) · Rev(F ).

Note: can sell the bundle w.h.p. and lose ≈ 1/
√
n of the revenue.
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Independent: Revenue Guarantee vs. Menu Size

LY’13

HN’12

DDT’13

BILW’14

BGN’17BGN’17BGN’17
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R

ev
en

u
e

Menu Size

1/n

constant
fraction

1−ε

1−1/n

1

1 Poly(n) Exp(n) Finite Infinite

BGN’17

BGN’17

Open
Question
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Correlated: Revenue Guarantee vs. Menu Size

G
u

ar
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te
ed

F
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ct
io

n
of

O
p

ti
m

al
R

ev
en

u
e

Menu Size

1/n

constant
fraction

1−ε

1−1/n

1

1 Poly(n) Exp(n) Finite Infinite
BCKW’10,HN’13

Kira’s lecture
after the break
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Dependence on ε: Lower Bound for Two Items
DDT’13,15 ⇒ required menu-size is ω(1) as a function of ε.

Theorem (G.’18)

There exist C (ε) = Ω(1/ 4√ε) and F ∈ ∆
(
[0, 1]

)
, s.t. for every

ε > 0, Rev [C(ε)](F×F ) < Rev(F×F )− ε

• F = Beta(1, 2) as in DDT. (Also via optimal transport.)
• ⇒ same lower bound for multiplicative ε loss, even for i.i.d.
• ⇒ same Ω(1/ 4√ε) lower bound for any fixed n.
• ⇒ For fixed n, menu-size poly(1/ε) necessary and sufficient.
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Dependence on ε: Communication Complexity
DDT’13,15 ⇒ required menu-size is ω(1) as a function of ε.

Theorem (G.’18)

There exist C (ε) = Ω(1/ 4√ε) and F ∈ ∆
(
[0, 1]

)
, s.t. for every

ε > 0, Rev [C(ε)](F×F ) < Rev(F×F )− ε

• ⇒ For fixed n, menu-size poly(1/ε) necessary and sufficient.
• Recall: the deterministic comm. complexity of computing a

mechanism outcome is the log of its menu-size. (BGN’17)

Corollary (G.’18)

For every n there exists Dn(ε) = Θ(log 1/ε) s.t. for every ε > 0,
Dn(ε) is the minimum communication complexity that satisfies
the following: For every distribution F ∈ ∆

(
[0, 1]n

)
there exists

a mechanism M s.t. the deterministic comm. complexity of
running M is Dn(ε) and s.t. RevM(F ) > OPT(F )− ε. (Holds
even if F guaranteed to be product of independent distribs.)
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Summary: Menu Size as a Function of n and ε

C (n, ε) : poly(n) BILW’14,BGN’17 some ε (= 5/6)

poly(n) ≤ ??? ≤ exp(n) arbitrary fixed ε

1 M’81
RZ’83 poly(1/ε) BGN’17,G’18 exp(n) BGN’17 ε→ 0

n = 1 arbitrary fixed n n→∞ ε = 1/n −−−→
n→∞

0

Open Question

Is it true that for every n, a menu-size polynomial in n can guarantee
99% of the optimal revenue for any F ∈ ∆

(
R+

)n
?

Multiplicative loss seems the “right goal” for fixed ε and n→∞.

• For additive ε loss and values in [0, 1], the lower bound of
Babaioff-G.-Nisan’17 implies that exp(n) menu-size required.

• Somewhat intuitive, as “total welfare in market” may grow linearly
with n (and does so in their analysis). Better goal for additive loss
is additive nε (or equivalently, additive ε when values bounded
in [0, 1/n]) — quite similar to multiplicative ε.

Better core analysis than nudge and round?
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Structure in the Core / Improve on Nudge & Round
• “Nudge and round” uses hardly any structural information

about the mechanism. Indeed, any mechanism (not
necessarily optimal) can be rounded using nudge and round.
• Some results were able to improve upon nudge and round

via structural information due to additional assumptions:
• Dughmi-Han-Nisan’14 achieve near-optimal revenue for

monotone valuations (good i is always valued less than
good i+1, e.g., ad auctions) via polynomial menu-size.

• Wang-Tang’14: sufficient conditions / families of distributions
for which the optimal menu has very small (≤ 4; ≤ 6) size.

• G.’18 slightly shaves exponent for a standard hazard condition.
• As we have seen, Babaioff-G.-Nisan’17 achieve separate-selling

revenue for independent valuations via polynomial menu-size.
• But structure of optimal mechanism, even for two items,

even i.i.d., even bounded, mostly not understood.
• Main open problem: 99% of revenue via poly(n) menu-size,

even for i.i.d. items, even for bounded distributions.
• Additional open problem: constructive upper-bound proofs.
• As opposed to “start with an optimal menu and discretize.”

Yannai A. Gonczarowski (HUJI&MSR) The Menu-Size Complexity of Multi-Item Revenue Maximization June 18, 2018 26 / 32



Revenue
Maximization

One Item is
Simple

Optimal
Auctions can
be Complex

Measuring
Auction
Complexity

Menu-Size
Complexity

Precise
Revenue
Maximization

Correlated
Values

Additive
Approximation

Multiplicative,
Bounded [L,H]

Independent
Values

Open
Questions

Beyond
Additive
Valuations

Zooming into
the Action

Qualitative Results: Uniform Convergence
Restricting only to limits, most models pretty well understood:

∀n,m : inf
F∈∆(Rn

+)

Rev [m](F )

Rev(F )
= 0

∀n : inf
F∈∆(R+)n

Rev [m](F )

Rev(F )
−−−−−−→

m→∞
1

∀n,H > L > 0 : inf
F∈∆([L,H]n)

Rev [m](F )

Rev(F )
−−−−−−→

m→∞
1

∀n : sup
F∈∆([0,1]n)

(
Rev(F )−Rev [m](F )

)
−−−−−−→

m→∞
0

• As noted, not understood well enough:
How fast must C grow as a function of n and ε?
(What is the rate of (uniform) convergence?)

• May also be interesting: other restrictions/relaxations that
provide uniform convergence/uniform approximation?
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More than One Buyer
• Everything so far was for one buyer.

• Completely open: extend above results to ≥ one buyer.

• But how should menu-size be defined? The menu faced by
each buyer depends on the valuations of the other buyers.

• Largest menu every shown? Sum of menu sizes? Size of
union of menus? Something else?

• Or maybe focus on continuing to capture the
communication complexity of running the mechanism?
• Related (welfare maximization literature): Dobzinski’16:

for rich-enough valuations (far beyond additive):
• communication complexity ≈ log of number of possible

menus shown to a buyer (“taxation complexity”),
• query complexity ≈ largest menu shown to any buyer.
• Does not apply to additive valuations (or even to

gross-substitute valuations).

• What does capture these complexities for additive buyers?

• Required complexities for good revenue guarantees?
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Summary of Open Questions (that interest me)

• 99% revenue via poly(n) menu-size in any model (even
i.i.d, even bounded)?

• Constructive upper bounds? Efficient construction?

• Significantly tighter polynomials? (e.g., m1/7 in HN’13)

• Generalizations of above results for multiple buyers?

• Other restrictions (e.g., independent/bounded) or
relaxations (e.g., additive) that yield uniform approximation?

• Other auction complexity measures?

• The not-yet-stated question underlying your EC’19 paper!
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An Aside: Query Complexity for Complex Valuations
• Dobzinski’11, Dughmi-Vondrak’11, Dobzinski-Vondrak’12,

Nisan’14 (survey, proof credited to Dobzinski) study the
query complexity of welfare-approximating auctions for
combinatorial (general, not necessarily additive) valuations.
• General proof scheme:

1 For any mechanism that guarantees good welfare, there
exist a buyer i and valuations for all other buyers s.t. buyer i
faces a large menu when all others have these valuations.

2 Number of value queries to buyer i is ≥ menu size she faces.
• Sketch of second step, simplified for deterministic

mechanisms and general combinatorial valuations:
• Fix the valuations of all other buyers. Let buyer i value

bundle B by the price of bundle B according to the menu.
• Buyer i is completely indifferent between any two bundles.
• Consider the scenario where the value of buyer i for a

certain bundle B̂ was actually one more than the price of
that bundle. For the mechanism to rule this out, it must
query the value of buyer i for each offered bundle.

• Above papers: restricted valuations, randomized auctions.
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Zooming into the Action: a Brief History of Menu Sizes

Multiplicative revenue approximation:

1 item many items (combinatorial valuations)

1 item many items w/ additive valuations many items (combinatorial valuations)

1 item 2 items w/ additive valuations many items w/ additive valuations many items (combinatorial valuations)

1 item 2 items w/ independent additive valuations 2 items w/ additive valuations many items w/ additive valuations many items (combinatorial valuations)

Precise revenue maximization:

1 item 2 items w/ i.i.d. additive bounded valuations

1 item Kira’s lecture after the break!
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Questions?

Thank you!
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