EC'18 Tutorial:

The Menu-Size Complexity of Precise and Approximate Revenue-Maximizing Auctions

Kira Goldner¹ and Yannai A. Gonczarowski²

 $^{1}\mbox{University}$ of Washington $^{2}\mbox{The Hebrew University}$ of Jerusalem and Microsoft Research

Cornell University, Ithaca, NY, June 18, 2018

Schedule:

08:30am - 10:30am: The Menu-Size of Multi-Item Auctions (Yannai)

11:00am – 12:30am: The Menu-Size of FedEx and Related Auctions (Kira)

The Menu-Size of Multi-Item Auctions

Yannai A Gonczarowski

The Hebrew University of Jerusalem and Microsoft Research

EC'18 Tutorial: The Menu-Size of Precise and Approximate Revenue-Maximizing Auctions

Cornell University, Ithaca, NY, June 18, 2018

This Lecture

- Aiming to not assume any prior knowledge of menu-size concepts.
- Shout out if you have a question.
- Tutorial goal: start from basics, and get you acquainted with the recent explosion of results, directions, and open questions on menu sizes.
 - This lecture: multi-item auctions
 - Kira's lecture (after the break): FedEx and related auctions.
- Focus on results, with only glimpses of proofs/techniques (mostly for intuition regarding open questions).
- Lecture/tutorial order not chronological.
- Did I miss a relevant result? Please talk to me / email me.

Revenue Maximization

One Item is

Optimal Auctions car be Complex

Measuring Auction Complexit

Menu-Size Complexit

Revenue Maximization

Correlated Values

Additive Approximation

Multiplicative, Bounded [*L*,*H*]

Independent Values

Questions Beyond

Valuations
Zooming into

Model

- A single seller has n nonidentical items that she would like to sell. The seller has no other use (and has no cost) for the items.
- There is one (potential) buyer, who has a private value (maximum willingness to pay) for each item (need not be the same for all items).
- The buyer's valuation is **additive**: her value for any subset of the items is the **sum** of her values for the items in the subset.
 - The buyer's utility is quasilinear: her total utility is the sum of her values for the items that she holds, minus any payments she has made.
 - The buyer has no budget constraints.
- Stylized model: the seller knows a prior distribution over the buyer's values for the individual items. (The values for the various item may be correlated.)
- (The buyer and seller are **risk-neutral**: seller cares only about expected revenue, buyer cares only about expected utility.)

3 / 32

Auctions / Mechanisms

- A (direct-revelation) auction mechanism is a function that maps (in a possibly randomized manner) each possible buyer type (specification of value for each item) to an **outcome**: which items to award the buyer, and how much to charge the buyer.
 - A mechanism is individually rational (IR) if the buyer can always opt out: the expected utility (over the randomness of the mechanism) of any buyer type is always nonnegative. (Mechanism cannot be "pay me a billion dollars and get Item 3.")
- A mechanism is incentive compatible (IC) if the buyer has no incentive to **strategize**: $\forall t, t' : \mathbb{E} [u_t(M(t))] > \mathbb{E} [u_t(M(t'))],$ where the expectation is over the randomness of the mechanism. (Mechanism cannot be "tell me your type, now take all items and pay me your value for all items.")
- The seller wishes to choose a truthful (IR+IC) mechanism that maximizes her expected revenue, where the expectation is over both the prior distribution and the randomness of the mechanism.

One Item is Simple

One Item

- A possible mechanism: choose a price, and offer the item for that price.
- Among all posted-price mechanisms, the one obtaining highest revenue is the one posting a price of

$$\operatorname{arg} \operatorname{\mathsf{Max}}_p p \cdot \mathbb{P}_{v \sim F} [v \geq p].$$

Other mechanisms also possible (e.g., lottery tickets).

Theorem (Myerson, 1981; Riley and Zeckhauser, 1983)

No other mechanism can obtain better revenue than posting the revenue-maximizing price.

Optimal Auctions can be Complex

Two Items

How can the seller maximize the revenue from two items?

If independent, optimally sell each item separately?

Example

If both item values are uniformly distributed in $\{1, 2\}$:

- Pricing each item separately, seller obtains a revenue of \$1 for each item, for a total revenue of \$2.
- Pricing only the bundle at \$3, seller obtains a revenue of $\$3 \cdot 0.75 = 2.25 > 2!$
- So pricing each item separately does not always maximize revenue!

Maximizatio

One Item is Simple

Optimal Auctions can be Complex

Measuring Auction Complexity

Menu-Size Complexit

Revenue Maximization

Correlated Values

Additive Approximation

Multiplicative, Bounded [L,H]

Independent Values

Beyond Additive

Valuations
Zooming into

Two Items

How can the seller maximize the revenue from two items?

- If independent, optimally sell each item separately? X
- Optimally sell the bundle of both items? X
- Either sell separately or bundle? X
- Post a price for each item and a price for the bundle? X
- Choose between a few lotteries? X

Distribution	Optimal Mechanism
$U(\lbrace 1,2\rbrace) \times U(\lbrace 1,2\rbrace)$	Sell the bundle (for \$3)
$U(\lbrace 0,1\rbrace) \times U(\lbrace 0,1\rbrace)$	Sell each separately (\$1 each)
$U({0,1,2}) \times U({0,1,2})$	Offer: one for $$2 / both for 3
$U(\lbrace 1,2\rbrace) \times U(\lbrace 1,3\rbrace)$	Offers include lottery tickets (both for \$4 / for \$2.5: first w.p. 1, second w.p. 1/2) T'04,DDT'14
$Beta(1,2) \times Beta(1,2)$	Offer infinitely many lotteries

Optimal Auctions can be Complex

Hard (#P-Hard) to compute. DDT'14

Harder to represent to the participant.

Harder for the participant to find/verify optimal strategy.

So what can we get using simpler auctions?

Measuring Auction Complexity

Simple Auctions: Limiting Complexity

Option 1: Qualitatively: disallow some "features":

Allow only separate selling.

HN'12

Allow only "packaging".

BILW'14, R'16

Disallow lotteries

BNR'18

An "all or nothing" approach...

Such studied features lose at least a constant factor of revenue.

Option 2: Quantitatively: limit a numeric complexity measure:

Number of options presented to the buyer.

HN'13

Length of auction description using any language. DHN'14

Learning-theoretic dimensionality.

MR'15, MR'16, BSV'16, BSV'18

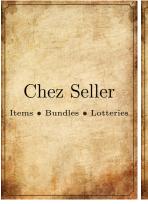
approach... Α

This tutorial.

Menu-Size Complexity

The Menu Size of an Auction Mechanism

By the **Taxation Principle**, every truthful mechanism, however complex, is equivalent to specifying a menu of possible probabilistic outcomes for the buyer to choose from.



Was floating around as a proof technique even before 2013: Briest-Chawla-Kleinberg-Weinberg'10, Dobzinski'11, Dughmi-Vondrak'11, Dobzinski-Vondrak'12.

Menu Size

Hart-Nisan'13

Maximizatio

One Item is Simple

Optimal Auctions car be Complex

Measuring Auction Complexit

Menu-Size Complexity

Precise Revenue Maximization

Correlated Values

Additive Approximation

Multiplicative, Bounded [L, H]

Independent Values

Questions
Beyond

Zooming into

Menu-Size as Complexity Measure: Pros and Cons

Pros:

- Simple and intuitive to define.
- Tractable to analyze.
- The base-2 logarithm (rounded up) of the menu-size is the deterministic communication complexity of computing the auction outcome (Babaioff-G.-Nisan'17).

Cons:

- There may be auctions that are intuitively simple, and also concise to describe, but have a large menu size.
- Main example: selling n items separately; menu-size exp(n).
 Indeed, high (linear in n) communication complexity...
 - but still seems "simple." Mitigating: separate-selling revenue attainable via poly(n) menu size (Babaioff-G.-Nisan'17).
 - Switch to "additive menu" size? (Definition w.r.t. lotteries?)
 - By any natural definition, even for two i.i.d. items, the optimal revenue cannot be attained by an "additive menu" (Babaioff-Nisan-Rubinstein'18).

Auction complexity measures trade-off simplicity of definition (e.g., menu size) with flexibility (e.g., Kolmogorov complexity).

Menu-Size Complexity

Menu-Size Complexity

- The menu size is extremely simple and intuitive to define, and directly implies the communication complexity of running the mechanism.
- But it is important to be aware of its flaws (esp. as a function of the number of item n; actually as a function of other parameters such as ε or H that will be defined later, the above criticism does not directly apply, or even does not apply at all).
- Important to analyze this simple measure; important to understand other auction complexity measures as well. Must start from somewhere....
- Maybe someone in the audience will suggest a new measure for auction complexity?

Maximization

One Item i Simple

Optimal Auctions car be Complex

Measuring Auction Complexit

Menu-Size Complexit

Precise Revenue Maximization

Correlated Values

Additive Approximation

Multiplicative, Bounded [L,H]

Independent Values

Beyond Additive

Valuations
Zooming into

Precise Revenue Maximization

Theorem (Daskalakis et al., 2013, 2015)

There exists a distribution $F \in \Delta([0,1])$ s.t. the menu of the optimal mechanism for $F \times F$ has a continuum of menu entries.

- F = Beta(1,2): distributed over [0,1] w/density 2(1-x).
- Proof uses their optimal-transport duality framework.

So, for precise revenue maximization:

- One item: menu-size 1 suffices (Myerson'81, RZ'83).
- Two items, even bounded, i.i.d., "nice" distributions: infinite menu-size required.

Two ways to proceed from here:

- Approximate revenue maximization rest of this lecture.
- Find a model "in between" one item and two i.i.d. items.
 - Kira's lecture after the break.

Correlated Values

Approximate Revenue Maximization

Theorem (Hart-Nisan'13, inspired by proof of Briest-Chawla-Kleinberg-Weinberg'10 for n > 3)

For every number of items n > 2, every $\varepsilon > 0$, and every menu-size m, there exists a distribution $F \in \Delta([0,1]^n])$ s.t.

Optimal revenue attainable by $\Rightarrow \mathcal{R}ev_{[m]}(F) < \varepsilon \cdot \mathcal{R}ev(F) \Leftarrow^{Optimal revenue attainable}$ an auction with menu-size m

- In particular, deterministic mechanisms cannot guarantee any fraction of the optimal revenue.
- Compare: Hart-Reny'17 (see also Hart-Nisan'12): selling two independent items separately attains > 62% of OPT.

Three ways to proceed from here:

- How does the revenue improve with the menu size?
- Relax our goal: additive approximation.
- Restrict distribs.: bounded also from below / independent.

Will touch on all above, focus on independent item distributions.

Measuring Auction Complexity

Menu-Size Complexit

Precise Revenue Maximization

Correlated Values

Additive Approximation

Multiplicative, Bounded [L,H]

Independent Values

Open Questions

Zooming into

Revenue Improvement with Menu Size

Theorem (Hart-Nisan'13)

For every $n \geq 2$ and every $F \in \Delta(\mathbb{R}^n_+)$:

- 1 $\mathcal{R}ev_{[1]}(F) = \mathcal{B}Rev(F) \Leftarrow^{Revenue \ attainable \ by \ optimally}$
- 2 $\Re ev_{[m_1+m_2]}(F) \leq \Re ev_{[m_1]}(F) + \Re ev_{[m_2]}(F)$ for all m_1, m_2 .
- 3 $\operatorname{Rev}_{[m]}(F) \leq m \cdot \operatorname{Rev}_{[1]}(F)$ for all m.

How tight is Part 3? Obviously, for some F bundling is optimal, so for such distributions $Rev_{[m]}(F) = Rev_{[1]}(F)$ for all m.

Theorem (Hart-Nisan'13)

For every $n \geq 2$, there exists a distribution $F \in \Delta(\mathbb{R}^n_+)$ with $\mathcal{R}ev_{[1]}(F) \in (0,\infty)$ s.t.

$$\operatorname{Rev}_{[m]}(F) \geq \Omega(m^{1/7}) \cdot \operatorname{Rev}_{[1]}(F).$$

They conjecture that the constant 1/7 can be improved upon...

Menu-Size Complexit

Precise Revenue Maximizatio

Correlated Values

Additive Approximation

Multiplicative, Bounded [*L*,*H*

Independen Values

Beyond Additive

ooming int

Additive Approximation for Bounded Domains

Theorem (Dughmi-Han-Nisan'14, see also Hart-Nisan'13)

There exists $C(n,\varepsilon) = (\log n/\varepsilon)^{O(n)}$ s.t. for every n, every $\varepsilon > 0$, and every $F \in \Delta([0,1]^n)$,

$$\operatorname{Rev}_{[C(n,\varepsilon)]}(F) > \operatorname{Rev}(F) - \varepsilon$$

- An upper bound! Proof technique: "nudge and round."
- We will prove that $C(n,\varepsilon) = \binom{n}{\varepsilon}^{O(n)}$ (Hart-Nisan'13):
 - 1 Start with the optimal menu.
 - **2 Nudge:** discount all prices multiplicatively: $p \leftarrow (1 \varepsilon/n) \cdot p$.
 - 3 Discretize by **rounding** probabilities (could have as well rounded price) to multiples of ε^2/n^2 . (DHN'14: log grid.)
- Revenue loss at most 2ε . Indeed, if the original payment by some buyer type is p, then new payment $\geq (1 \varepsilon/n)(p \varepsilon)$:
 - Post-discounting, the utility from any menu-entry originally costing less than $p \varepsilon$ is at least ε^2/n less than the utility from the originally chosen menu-entry.
 - Discretizing decreased the utility from the originally chosen entry by at most ε^2/n , so could not have tilted the balance.

Menu-Size Complexit

Precise Revenue Maximization

Correlated Values

Additive Approximation

 $\begin{array}{c} {\sf Multiplicative,} \\ {\sf Bounded} \ [L,H] \end{array}$

Independent Values

Additive Valuations

oming into

Multiplicative Loss vs. Additive Loss

Recall that on one hand:

Theorem (Hart-Nisan'13, see also Briest-Chawla-Kleinberg-Weinberg'10)

For every number of items $n \ge 2$, every $\varepsilon > 0$, and every menu-size m, there exists a distribution $F \in \Delta([0,1]^n])$ s.t.

$$\mathcal{R}ev_{[m]}(F) < \varepsilon \cdot \mathcal{R}ev(F)$$

And on the other hand:

Theorem (Dughmi-Han-Nisan'14, see also Hart-Nisan'13)

There exists $C(n, \varepsilon) = (\log n/\varepsilon)^{O(n)}$ s.t. for every n, every $\varepsilon > 0$, and every $F \in \Delta([0, 1]^n)$,

$$\operatorname{\mathcal{R}ev}_{[C(n,\varepsilon)]}(F) > \operatorname{\mathcal{R}ev}(F) - \varepsilon$$

So the impossibility in the first theorem above comes from the case of very small optimal revenues.

Multiplicative, Bounded [L,H]

Multiplicative Loss with Bounded Support

Indeed, the above additive upper bounds follow from:

Theorem (Dughmi-Han-Nisan'14, see also Hart-Nisan'13)

There exists
$$C(n, \varepsilon, H) = \left(\frac{\log n + \log H}{\varepsilon}\right)^{O(n)}$$
 s.t. for every n , every $\varepsilon > 0$, every H and every $F \in \Delta([1, H]^n)$, $\mathcal{R}ev_{[C(n,\varepsilon,H)]}(F) > (1-\varepsilon) \cdot \mathcal{R}ev(F)$

Minimum of 1 is w.l.o.g., since can scale [L, H] to [1, H/L].

Theorem (Dughmi-Han-Nisan'14)

For distributions supported on $[1, H]^n$:

- **1** Menu-size n can attain a $\Omega(1/\log H)$ fraction of the revenue.
- 2 Auctions with Kolmogorov complexity polynomial in n guarantee at most a $O(1/\log H)$ fraction of the revenue.
- ⇒ Moving to any fancier complexity measure will not help here.

Precise Revenue Maximization

Correlated Values

Additive Approximation

Bounded [L, I

Values
Open
Open

Valuations

ooming into

Guarantees for Unbounded Distributions

For unbounded distribs., only multiplicative loss makes sense. On one hand:

Theorem (Hart-Nisan'13, see also Briest et al.'10)

For every $n \ge 2$, every $\varepsilon > 0$, and every menu-size m, there exists a distribution $F \in \Delta([0,1]^n])$ s.t.

$$\mathcal{R}ev_{[m]}(F) < \varepsilon \cdot \mathcal{R}ev(F)$$

And on the other hand:

Theorem

For every n, every $\varepsilon > 0$, and every L, H, there exists $C(n, \varepsilon, L/H) = \left(\frac{\log n + \log L/H}{\varepsilon}\right)^{O(n)}$ s.t. for every $F \in \Delta([L, H]^n)$, $\mathcal{R}ev_{[C(n,\varepsilon,L/H)]}(F) > (1-\varepsilon) \cdot \mathcal{R}ev(F)$

What about restricting the distributions in some way other than bounding? (In any way, "nudge and round" no longer suffices.)

Independent Values

Independent Values

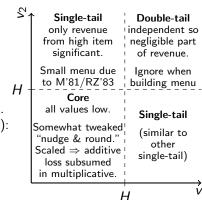
Theorem (Babaioff-G.-Nisan'17)

For every n and every $\varepsilon>0$, there exists $C(n,\varepsilon)=\left(\log n/arepsilon
ight)^{O(n)}$ s.t. for every $F_1, \ldots, F_n \in \Delta(\mathbb{R}_+)$,

$$\operatorname{Rev}_{[C(n,\varepsilon)]}(F_1 \times \cdots \times F_n) > (1-\varepsilon) \cdot \operatorname{Rev}(F_1 \times \cdots \times F_n).$$

Recall: "nudge & round" not suitable for unbounded distributions. (Grid discrete but infinite.)

- Rough high-level overview:
 - Scale so that $\Re ev(F) = 1$.
 - For suitable $H = poly(n, \varepsilon)$:
 - Main thing to note: exponential menu size only due to selling to the core.



Maximizati

One Item is Simple

Optimal Auctions car be Complex

Measuring Auction Complexit

Menu-Size Complexit

Precise Revenue Maximization

Correlated Values

Additive Approximation

Bounded [L,

Independent Values

Questions Beyond Additive

Valuations
Zooming into

Required Menu Size

Theorem (Babaioff-G.-Nisan'17)

For every n and every $\varepsilon > 0$, there exists $C(n, \varepsilon) = (\log n/\varepsilon)^{O(n)}$ s.t. for every $F_1, \ldots, F_n \in \Delta(\mathbb{R}_+)$,

 $\operatorname{\mathcal{R}ev}_{[C(n,\varepsilon)]}(F_1 \times \cdots \times F_n) > (1-\varepsilon) \cdot \operatorname{\mathcal{R}ev}(F_1 \times \cdots \times F_n).$

How fast must C grow as a function of n and ε ?

Theorem (Babaioff-Immorlica-Lucier-Weinberg'14)

For product distributions, either selling separately or selling bundled guarantees at least c>1/6 of the optimal revenue.

Theorem (Babaioff-G.-Nisan'17)

For product distributions, the revenue from selling separately can be attained up to a multiplicative ε via menu-size $\mathbf{n}^{d(\varepsilon)}$.

 \Rightarrow poly(n) menu-size guarantees 1/6 of optimal revenue.

Maximizati

One Item is Simple

Optimal Auctions can be Complex

Measuring Auction Complexity

Menu-Size Complexit

Revenue Maximization

Correlated Values

Additive Approximation

Bounded [*L*,
Independent
Values

Open Questions

Valuations
Zooming into

Required Menu Size

Theorem (Babaioff-G.-Nisan'17)

For every n and every $\varepsilon > 0$, there exists $C(n, \varepsilon) = (\log n/\varepsilon)^{O(n)}$ s.t. for every $F_1, \ldots, F_n \in \Delta(\mathbb{R}_+)$,

 $\operatorname{Rev}_{[C(n,\varepsilon)]}(F_1 \times \cdots \times F_n) > (1-\varepsilon) \cdot \operatorname{Rev}(F_1 \times \cdots \times F_n).$

How fast must C grow as a function of n and ε ?

Theorem (Babaioff-G.-Nisan'17, see also Babaioff et al.'14)

There exists d s.t. for every n and every $F_1, \ldots, F_n \in \Delta(\mathbb{R}_+)$, $\mathcal{R}ev_{[n^d]}(F_1 \times \cdots \times F_n) > 1/6 \cdot \mathcal{R}ev(F_1 \times \cdots \times F_n)$.

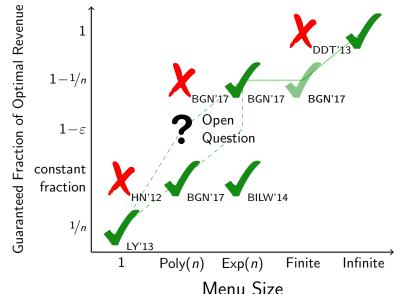
Theorem (Babaioff-G.-Nisan'17)

Fix $F=Uig(\{0,1\}ig)^n$, then $\mathcal{R}ev_{\lceil 2^{n/10} \rceil}(F)< (1-rac{1}{10n})\cdot \mathcal{R}ev(F)$.

Note: can sell the bundle w.h.p. and lose $\approx 1/\sqrt{n}$ of the revenue.

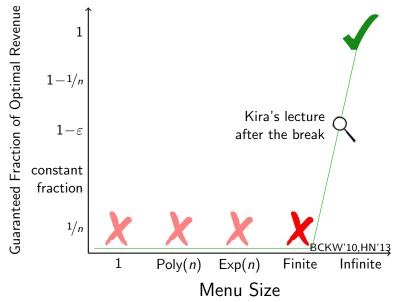
Independent Values

Independent: Revenue Guarantee vs. Menu Size



Independent Values

Correlated: Revenue Guarantee vs. Menu Size



evenue aximizatio

One Item is Simple

Optimal Auctions can be Complex

Measuring Auction Complexity

Menu-Size Complexity

Precise Revenue Maximization

Correlated Values

Additive Approximation

Multiplicative,

Independent Values

Open Questions

Beyond Additive Valuations

looming in the Action

Dependence on ε : Lower Bound for Two Items

DDT'13,15 \Rightarrow required menu-size is $\omega(1)$ as a function of ε .

Theorem (G.'18)

There exist $C(\varepsilon) = \Omega(1/\sqrt[4]{\varepsilon})$ and $F \in \Delta([0,1])$, s.t. for every $\varepsilon > 0$, $\Re ev_{[C(\varepsilon)]}(F \times F) < \Re ev(F \times F) - \varepsilon$

- F = Beta(1, 2) as in DDT. (Also via optimal transport.)
- \Rightarrow same lower bound for **multiplicative** ε loss, even for i.i.d.
- \Rightarrow same $\Omega(1/\sqrt[4]{\varepsilon})$ lower bound for any fixed n.
- \Rightarrow For fixed n, menu-size poly($1/\varepsilon$) necessary and sufficient.

Independent Values

Dependence on ε : Communication Complexity

DDT'13,15 \Rightarrow required menu-size is $\omega(1)$ as a function of ε .

Theorem (G.'18)

There exist $C(\varepsilon) = \Omega(1/\sqrt[4]{\varepsilon})$ and $F \in \Delta([0,1])$, s.t. for every $\varepsilon > 0$. $\mathcal{R}ev_{[C(\varepsilon)]}(F \times F) < \mathcal{R}ev(F \times F) - \varepsilon$

- \Rightarrow For fixed n, menu-size poly($1/\varepsilon$) necessary and sufficient.
- Recall: the deterministic comm. complexity of computing a mechanism outcome is the log of its menu-size. (BGN'17)

Corollary (G.'18)

For every n there exists $D_n(\varepsilon) = \Theta(\log 1/\varepsilon)$ s.t. for every $\varepsilon > 0$, $D_n(\varepsilon)$ is the minimum communication complexity that satisfies the following: For every distribution $F \in \Delta([0,1]^n)$ there exists a mechanism M s.t. the deterministic comm. complexity of running M is $D_n(\varepsilon)$ and s.t. $\Re V_M(F) > OPT(F) - \varepsilon$. (Holds even if F guaranteed to be product of independent distribs.)

evenue laximizatio

One Item i Simple

Optimal Auctions car be Complex

Measuring Auction Complexit

Menu-Siz Complexi

Precise Revenue Maximization

Correlate Values

Additive Approximation

Multiplicative, Bounded [*L*,*H*]

Independent Values

Questions

Zooming into

Summary: Menu Size as a Function of n and ε

$$\begin{array}{c|c} C\big(n,\varepsilon\big): & \text{poly}(n) \text{ BILW'14,BGN'17} \\ \hline 1 \text{ m'81 } & \text{poly}(1/\varepsilon) \text{ BGN'17,G'18} & \text{exp}(n) \longleftrightarrow \text{BGN'17} \\ \hline n=1 & \text{arbitrary fixed } n & n\to\infty \\ \hline \end{array} \quad \begin{array}{c|c} \text{poly}(n) \in \mathbb{F}(n) \\ \text{exp}(n) \longleftrightarrow \text{BGN'17} \\ \hline \varepsilon \to 0 \\ \varepsilon = 1/n \xrightarrow[n \to \infty]{} 0 \end{array}$$

Open Question

Is it true that for every n, a menu-size polynomial in n can guarantee 99% of the optimal revenue for any $F \in \Delta(\mathbb{R}_+)^n$?

Multiplicative loss seems the "right goal" for fixed ε and $n \to \infty$.

- For additive ε loss and values in [0,1], the lower bound of Babaioff-G.-Nisan'17 implies that $\exp(n)$ menu-size required.
- Somewhat intuitive, as "total welfare in market" may grow linearly with n (and does so in their analysis). Better goal for additive loss is additive $n\varepsilon$ (or equivalently, additive ε when values bounded in [0, 1/n]) quite similar to multiplicative ε .

Better core analysis than nudge and round?

evenue laximizatio

One Item is Simple

Optimal Auctions ca be Complex

Measuring Auction Complexit

Complexit

Precise Revenue Maximization

Correlate Values

Approximation

Multiplicative, Bounded [*L*,*H*

Independent Values

Open Questions Beyond

Valuations
Zooming into

Structure in the Core / Improve on Nudge & Round

- "Nudge and round" uses hardly any structural information about the mechanism. Indeed, any mechanism (not necessarily optimal) can be rounded using nudge and round.
- Some results were able to improve upon nudge and round via structural information due to additional assumptions:
 - Dughmi-Han-Nisan'14 achieve near-optimal revenue for monotone valuations (good i is always valued less than good i+1, e.g., ad auctions) via polynomial menu-size.
 - Wang-Tang'14: sufficient conditions / families of distributions for which the optimal menu has very small (\leq 4; \leq 6) size.
 - G.'18 slightly shaves exponent for a standard hazard condition.
 - As we have seen, Babaioff-G.-Nisan'17 achieve separate-selling revenue for independent valuations via polynomial menu-size.
- But structure of optimal mechanism, even for two items, even i.i.d., even bounded, mostly not understood.
- Main open problem: 99% of revenue via poly(n) menu-size, even for i.i.d. items, even for bounded distributions.
 - Additional open problem: constructive upper-bound proofs.
 - As opposed to "start with an optimal menu and discretize."

Open Questions

Qualitative Results: Uniform Convergence

Restricting only to limits, most models pretty well understood:

$$\forall n, m: \qquad \inf_{F \in \Delta(\mathbb{R}^n_+)} \frac{\mathcal{R}ev_{[m]}(F)}{\mathcal{R}ev(F)} = 0$$

$$\forall n: \qquad \inf_{F \in \Delta(\mathbb{R}_+)^n} \frac{\mathcal{R}ev_{[m]}(F)}{\mathcal{R}ev(F)} \xrightarrow{m \to \infty} 1$$

$$\forall n, H > L > 0:$$

$$\inf_{F \in \Delta([L,H]^n)} \frac{\mathcal{R}ev_{[m]}(F)}{\mathcal{R}ev(F)} \xrightarrow{m \to \infty} 1$$

$$\forall n: \sup_{F \in \Delta([0,1]^n)} \left(\operatorname{\mathcal{R}ev}(F) - \operatorname{\mathcal{R}ev}_{[m]}(F) \right) \xrightarrow{m \to \infty} 0$$

- As noted, not understood well enough: How fast must C grow as a function of n and ε ? (What is the rate of (uniform) convergence?)
- May also be interesting: other restrictions/relaxations that provide uniform convergence/uniform approximation?

Maximizatio

One Item is Simple

Optimal Auctions car be Complex

Measuring Auction Complexit

Menu-Size Complexit

Revenue Maximization

Correlated Values

Additive Approximation

Multiplicative, Bounded [L,H]

Independent Values

Open Questions

Valuations

oming into

More than One Buyer

- Everything so far was for one buyer.
- ullet Completely open: extend above results to \geq one buyer.
- But how should menu-size be defined? The menu faced by each buyer depends on the valuations of the other buyers.
- Largest menu every shown? Sum of menu sizes? Size of union of menus? Something else?
- Or maybe focus on continuing to capture the communication complexity of running the mechanism?
- Related (welfare maximization literature): Dobzinski'16: for rich-enough valuations (far beyond additive):
 - communication complexity ≈ log of number of possible menus shown to a buyer ("taxation complexity"),
 - query complexity pprox largest menu shown to any buyer.
 - Does not apply to additive valuations (or even to gross-substitute valuations).
- What does capture these complexities for additive buyers?
- Required complexities for good revenue guarantees?

evenue Iaximizatio

One Item Simple

Optimal Auctions car be Complex

Measuring Auction Complexit

Menu-Size Complexit

Precise Revenue Maximizatio

Correlated

Additive Approximatio

Multiplicative, Bounded [L,H]

Independent Values

Open Questions

Valuations
Zooming into

oming into

Summary of Open Questions (that interest me)

- 99% revenue via poly(n) menu-size in any model (even i.i.d, even bounded)?
- Constructive upper bounds? Efficient construction?
- Significantly tighter polynomials? (e.g., $m^{1/7}$ in HN'13)
- Generalizations of above results for multiple buyers?
- Other restrictions (e.g., independent/bounded) or relaxations (e.g., additive) that yield uniform approximation?
 - Other auction complexity measures?
- The not-yet-stated question underlying your EC'19 paper!

œvenue ∕Iaximizatio

One Item is Simple

Optimal Auctions ca be Complex

Measurin Auction Complexi

Menu-Siz Complexi

Revenue Maximizatio

Correlated Values

Approximation

Multiplicative, Bounded [*L*,*H*

Values

Beyond Additive Valuations

Zooming into the Action

An Aside: Query Complexity for Complex Valuations

- Dobzinski'11, Dughmi-Vondrak'11, Dobzinski-Vondrak'12, Nisan'14 (survey, proof credited to Dobzinski) study the query complexity of welfare-approximating auctions for combinatorial (general, not necessarily additive) valuations.
- General proof scheme:
 - 1 For any mechanism that guarantees good welfare, there exist a buyer *i* and valuations for all other buyers s.t. buyer *i* faces a large menu when all others have these valuations.
 - 2 Number of value queries to buyer i is \geq menu size she faces.
- Sketch of second step, simplified for deterministic mechanisms and general combinatorial valuations:
 - Fix the valuations of all other buyers. Let buyer *i* value **bundle** *B* by the price of bundle *B* according to the menu.
 - ullet Buyer i is completely indifferent between any two bundles.
 - Consider the scenario where the value of buyer i for a certain bundle \hat{B} was actually one more than the price of that bundle. For the mechanism to rule this out, it must query the value of buyer i for each offered bundle.
 - Above papers: restricted valuations, randomized auctions.

levenue Jaximizatio

One Item

Optimal Auctions car be Complex

Measuring Auction Complexity

Menu-Size Complexit

Precise

Revenue Maximization

Correlated Values

Additive Approximation

Multiplicative, Bounded [L,H]

Independent Values

Question Beyond

Beyond Additive Valuatior

Zooming into the Action

Zooming into the Action: a Brief History of Menu Sizes

2 items w/ independent additive valuations

Multiplicative revenue approximation:

1 item (combinatorial valuations)

1 item 2 items w/ additive valuations many items w/ additive

many items w/ additive valuations

2 items w/ additive valuations

Precise revenue maximization:

1 item (2 items w/ i.i.d. additive bounded valuations

Kira's lecture after the break!

1 item

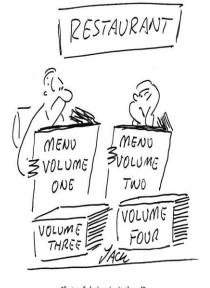
1 item

many items (combin

2 items w/

Questions?

Thank you!



"Lots of choice, isn't there!"